Synaptic Shot Noise and Conductance Fluctuations Affect the Membrane Voltage with Equal Significance

نویسندگان

  • Magnus J. E. Richardson
  • Wulfram Gerstner
چکیده

The subthreshold membrane voltage of a neuron in active cortical tissue is a fluctuating quantity with a distribution that reflects the firing statistics of the presynaptic population. It was recently found that conductance-based synaptic drive can lead to distributions with a significant skew. Here it is demonstrated that the underlying shot noise caused by Poissonian spike arrival also skews the membrane distribution, but in the opposite sense. Using a perturbative method, we analyze the effects of shot noise on the distribution of synaptic conductances and calculate the consequent voltage distribution. To first order in the perturbation theory, the voltage distribution is a gaussian modulated by a prefactor that captures the skew. The gaussian component is identical to distributions derived using current-based models with an effective membrane time constant. The well-known effective-time-constant approximation can therefore be identified as the leading-order solution to the full conductance-based model. The higher-order modulatory prefactor containing the skew comprises terms due to both shot noise and conductance fluctuations. The diffusion approximation misses these shot-noise effects implying that analytical approaches such as the Fokker-Planck equation or simulation with filtered white noise cannot be used to improve on the gaussian approximation. It is further demonstrated that quantities used for fitting theory to experiment, such as the voltage mean and variance, are robust against these non-Gaussian effects. The effective-time-constant approximation is therefore relevant to experiment and provides a simple analytic base on which other pertinent biological details may be added.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistics of subthreshold neuronal voltage fluctuations due to conductance-based synaptic shot noise.

Neurons in the central nervous system, and in the cortex in particular, are subject to a barrage of pulses from their presynaptic populations. These synaptic pulses are mediated by conductance changes and therefore lead to increases or decreases of the neuronal membrane potential with amplitudes that are dependent on the voltage: synaptic noise is multiplicative. The statistics of the membrane ...

متن کامل

Mean, Variance, and Autocorrelation of Subthreshold Potential Fluctuations Driven by Filtered Conductance Shot Noise

We study the subthreshold voltage fluctuations of a conductance-based passive point neuron stimulated by filtered Poissonian shot noise. We give exact analytical expressions in terms of quadratures for the first two time-dependent moments and the autocorrelation function of the membrane voltage. We also derive simplified expressions for the moments in terms of elementary functions that hold tru...

متن کامل

Method to calculate the moments of the membrane voltage in a model neuron driven by multiplicative filtered shot noise.

Neurons are subject to synaptic inputs from many other cells. These inputs consist of spikes changing the conductivity of the target cell, i.e., they enter the neural dynamics as multiplicative shot noise. Up to now, only for simplified models like current-based (additive-noise) point neurons or models with Gaussian white-noise input, exact solutions are available. We present a method to calcul...

متن کامل

Subthreshold voltage noise of rat neocortical pyramidal neurones.

Neurones are noisy elements. Noise arises from both intrinsic and extrinsic sources, and manifests itself as fluctuations in the membrane potential. These fluctuations limit the accuracy of a neurone's output but have also been suggested to play a computational role. We present a detailed study of the amplitude and spectrum of voltage noise recorded at the soma of layer IV-V pyramidal neurones ...

متن کامل

Non-stationary synaptic conductances modeled by filtered shot noise processes

We have investigated key statistical properties of systems that can be described by the filtering of shot noise in­ put through a first-order Ordinary Di↵erential Equation (ODE) with variable coe cients. Such systems give rise to filtered shot noise processes with multiplicative noise. Filtered shot noise processes have proven to be very e↵ective in modelling the evolution of systems exposed to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neural computation

دوره 17 4  شماره 

صفحات  -

تاریخ انتشار 2005